
REPORT

A Defect in the TUSC3 Gene Is Associated
with Autosomal Recessive Mental Retardation

Masoud Garshasbi,1,2 Valeh Hadavi,3 Haleh Habibi,4 Kimia Kahrizi,2 Roxana Kariminejad,3

Farkhondeh Behjati,2 Andreas Tzschach,1 Hossein Najmabadi,2,3 Hans Hilger Ropers,1

and Andreas Walter Kuss1,*

Recent studies have shown that autosomal recessive mental retardation (ARMR) is extremely heterogeneous, and there is reason to

believe that the number of underlying gene defects goes into the thousands. To date, however, only four genes have been implicated

in nonsyndromic ARMR (NS-ARMR): PRSS12 (neurotrypsin), CRBN (cereblon), CC2D1A, and GRIK2. As part of an ongoing systematic

study aiming to identify ARMR genes, we investigated a large consanguineous family comprising seven patients with nonsyndromic

ARMR in four sibships. Genome-wide SNP typing enabled us to map the relevant genetic defect to a 4.6 Mbp interval on chromosome

8. Haplotype analyses and copy-number studies led to the identification of a homozygous deletion partly removing TUSC3 (N33) in all

patients. All obligate carriers of this family were heterozygous, but none of 192 unrelated healthy individuals from the same population

carried this deletion. We excluded other disease-causing mutations in the coding regions of all genes within the linkage interval by se-

quencing; moreover, we verified the complete absence of a functional TUSC3 transcript in all patients through RT-PCR. TUSC3 is thought

to encode a subunit of the endoplasmic reticulum-bound oligosaccharyltransferase complex that catalyzes a pivotal step in the protein

N-glycosylation process. Our data suggest that in contrast to other genetic defects of glycosylation, inactivation of TUSC3 causes non-

syndromic MR, a conclusion that is supported by a separate report in this issue of AJHG. TUSC3 is only the fifth gene implicated in NS-

ARMR and the first for which mutations have been reported in more than one family.
With a prevalence of about 2%, mental retardation (MR) is

one of the most important unsolved problems in health

care. X-linked MR (XLMR) has been the subject of extensive

research during the past decade, and more than 60 XLMR

genes have been identified so far (for review, see Ropers

20061). In contrast, very little is known about the role of

autosomal genes, even though there is evidence that auto-

somal-recessive forms of MR (ARMR) are far more common

than X-linked ones. To date, only four genes have been im-

plicated in nonsyndromic ARMR (NS-ARMR). These are

PRSS12 (neurotrypsin; MIM 606709),2 CRBN (cereblon;

MIM 609262),3 CC2D1A (MIM 610055),4 and GRIK2 (gluta-

mate receptor 6; MIM 138244).5 Neurotrypsin is a trypsin-

like serine protease, and cereblon is an ATP-dependent

Lon protease, whereas CC2D1A (Freud-1) is a putative sig-

nal transducer participating in the positive regulation of

the I-kB kinase/NF-kB cascade, which plays a role in neuro-

trophin-regulated signaling pathways that control many

aspects of survival, development, and function of neurons

(for review see Reichardt 20066). GRIK2 encodes a kainate

receptor subunit involved in synaptic transmission. The

functional diversity of these four genes reflects the extreme

genetic heterogeneity of NS-ARMR, which we recently

established in a study involving 78 consanguineous Iranian

families of varying size.7

In the meantime, follow-up studies focusing on large to

very large consanguineous families have yielded numerous

additional loci for syndromic and nonsyndromic ARMR

(unpublished data). Here we describe how in one of these
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families, autozygosity mapping has led to the identifica-

tion of a deletion in TUSC3 (N33; MIM 601385), a gene

that is assumed to encode a subunit of the ER-bound oligo-

saccharyltransferase (OST) complex that catalyzes a pivotal

step in the protein N-glycosylation process.8

The pedigree and facial aspects of the patients are shown

in Figure 1. The degree of mental retardation in the

affected family members ranged from moderate to severe

(Table 1). None of the patients showed any other neurolog-

ical problems, congenital malformations, or facial dysmor-

phisms. Head circumferences, body heights, and weights

were normal (Table 1). For two of the patients (IV:5 and

IV:7), we performed an MRI scan, which revealed no mor-

phological abnormalities. Our study was approved by the

appropriate review boards in both Germany and Iran. Sam-

ple collection and clinical evaluation were carried out as

previously described,7 with the informed, written consent

of the parents. Individuals III:1, III:2, III:9, III:10, IV:1–IV:3,

IV:5, IV:7, IV:9, IV:13, and IV:14 were genotyped with the

Human Mapping 250K (Nsp) Array (Affymetrix) following

the protocol of the manufacturer. To reduce the noise and

to simplify the analysis, we ranked the markers according

to the quality of the array hybridization results, by using

the GeneChip Genotyping Analysis Software package

(GTYPE 4.1, Affymetrix). Linkage analysis was performed

with ~50,000 selected markers yielding the highest-quality

scores per family.

To generate appropriate input files for the linkage-analy-

sis programs Merlin9 and Allegro,10 we applied the
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ALOHOMORA software11 with subsets of 300–700 markers

in a sliding-window mode based on mapping information

from DeCode. Allele frequencies pertaining to the Cauca-

sian population were used. As a first level of quality con-

trol, we checked the gender of sampled individuals by

counting the heterozygous single-nucleotide polymor-

phisms (SNPs) on the X chromosome and comparing the

results with the pedigree file information, with the gen-

der-check tool of the ALOHOMORA software. In addition,

we employed the Chromosome Copy Number Analysis

Tool 4.0 (CNAT 4.0, Affymetrix) for determining the

copy number of X chromosomal markers. To verify the

relationships between individuals within families, we

checked the data with the graphical representation of

relationships errors software (GRR).12 Mendelian inconsis-

tencies and unlikely genotypes were detected by the

PedCheck13 and Merlin9 programs, respectively, and ex-

cluded from genotyping data prior to linkage analysis.

Assuming autosomal-recessive inheritance with complete

penetrance, we then carried out parametric linkage analy-

sis based on ~50,000 markers with high-quality genotyp-

ing scores. This analysis yielded a LOD score of 6.26 for

Figure 1. Pedigree and Facial Aspects
of Affected Family Members
Filled symbols indicate severeMR, and three-
quarter-filled symbols depict moderate MR.

Table 1. Clinical Features

Patient Sex Age at Examination
Mental
Retardation (IQ) Height OFC

IV:1 M 22 years Severe (20–30) 162 cm 54 cm

IV:2 F 21 years Moderate (35–40) 147 cm 54.5 cm

IV:5 M 8 years Moderate (40–49) 119 cm 50 cm

IV:7 F 29 years Moderate (30–40) 151 cm 55 cm

IV:9 F 26 years Moderate (35–40) 149 cm 51.5 cm

IV:14 F 17 years Moderate (40–49) 156 cm 54.5 cm

OFC denotes occipitofrontal circumference.

a 4.6 Mbp segment on chromo-

some 8p22 that contained 14 genes

(Figure 2).

In parallel, we performed DNA

copy-number analysis for the com-

plete set of SNP markers by using

two different software tools (Copy

Number Analyzer for Affymetrix

GeneChip [CNAG2.0]14 and the

CNAT 4.0 tool, Affymetrix) with 40

Iranian controls as reference panel.

In this way, we identified 16 adjacent

markers within the linkage interval

that were not called in the patients

(Figures 3A and 3B), indicative of a ho-

mozygous deletion of approximately

120–150 Kbp and including the first exon of the TUSC3

gene. By PCR amplification (forward primer 50-TTGGGTAC

ACCTCCCAGATG-30; reverse primer: 50-ATCCCAACCCAT

CATGTCAC-30) and sequencing of the junction fragment,

we could define the exact borders of the deletion

(Figure 4A) and show that 121,595 bp (between positions

15347852 and 15469447, NCBI genome build 36.1) were

homozygously deleted in all patients. Heterozygous car-

riers were identified by PCR amplification of the junction

fragment and a PCR product specific for the normal allele

(forward primer: 50-TACTTGTGAAAATAACCTGCCATT-30;

reverse primer: 50-TCTCACCAAAATGGTCCACA-30). All

parents of patients turned out to be heterozygous for this

deletion (Figure 4B), but we did not find any homozygous

or heterozygous deletion carriers among 192 unrelated

healthy Iranian individuals screened as controls.

To exclude other potentially disease-causing mutations,

we then sequenced the exons and exon-intron boundaries

of all genes in the relevant linkage interval. Apart from

two known SNPs and one silent nucleotide exchange,

no further sequence alterations were found (data not

shown). Thus, the deletion affecting TUSC3 was the

only functionally relevant change observed in this inter-

val.

To check for TUSC3 expression, we extracted total RNA

from Epstein-Barr Virus (EBV)-transformed lymphoblas-

toid cell lines (LCLs) of a patient and two controls by using

the TRIzol reagent (Invitrogen) and generated cDNA by us-

ing the SuperScript III Reverse Transcriptase (Invitrogen)

together with random hexamers. This cDNA was used to

perform PCRs with a series of primer combinations for

one or several adjacent exon sequences and together en-

compassing the entire gene. All predicted PCR products

were found to be present in the controls but not in the
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patient, proving the complete absence of a TUSC3 tran-

script in homozygous deletion carriers (Figure 4C). This re-

sult was substantiated by quantitative PCR, with blood-de-

rived cDNA from four healthy individuals as well as four

patients (not shown). We therefore conclude that the dele-

tion causes a complete loss of TUSC3 function, and that

this is responsible for the observed MR phenotype.

It is of note that copy-number variation involving

TUSC3 has been described in a parent and child from the

HapMap project,15–18 but this change involved only one

of the two alleles. Still, this observation prompted us to

re-examine array comparative genomic hybridization

(CGH) results from more than 700 unrelated individuals

previously analyzed with whole-genome tiling-path BAC

arrays in our laboratory. We identified two heterozygous

duplications in the vicinity of TUSC3 that did however

not include the gene itself (Reinhard Ullmann, personal

communication).

TUSC3 is believed to be the ortholog of the yeast Ost3

protein that was initially identified as a 34 kD subunit

in the yeast oligosaccharyltransferase (OST) complex8,19

(for a review on eukaryotic OST see, e.g., Kelleher and Gil-

more 200620). It is expressed in a wide range of human

tissues, including the brain. TUSC3 has 11 exons span-

ning ~224 Kbp of the genomic DNA on chromosome

8p22. According to the UniProtKB database, TUSC3 en-

codes a predicted 348 amino acid protein with five poten-

tial transmembrane domains (Figure 5) and seems to be

involved in catalyzing the transfer of a 14-sugar oligosac-

charide from dolichol to nascent protein. This reaction is

the central step in the N-linked protein glycosylation

pathway. Unlike other patients with congenital disorders

of glycosylation (CDG), which are characterized by ataxia,

seizures, retinopathy, liver fibrosis, coagulopathies, dys-

morphic features, and ocular abnormalities,21 our patients

only present with nonsyndromic mental retardation. An

explanation for the conspicuous absence of additional

symptoms in our patients may be the presence of a closely

Figure 2. Results of Parametric Link-
age Analysis with Merlin Software
A single significant peak (LOD score 6.26)
was observed on chromosome 8p22 be-
tween rs613566 and rs11203893.

related gene on Xq21.1, which en-

codes the implantation-associated

protein precursor (IAP or MAGT1).

MAGT1 is also assumed to be in-

volved in N-glycosylation through

its association with N-oligosaccharyl

transferase.22 It might thus be able

to partly compensate for the loss of

TUSC3, probably in a tissue-specific

manner. Our finding that affected in-

dividuals show no aberrant glycosyl-

ation of serum transferrin (determined by isoelectric fo-

cusing analysis; data not shown) is in keeping with this

speculation.

Our observation that loss of function of TUSC3 gives rise

to nonsyndromic MR is supported by a separate study,

appearing in this issue of AJHG, which reports on a small

French family with two mentally retarded sibs that carry

a homozygous frameshift mutation in the TUSC3 gene.23

However, neither this report nor ours has provided conclu-

sive evidence for the assumption that TUSC3 plays a role in

protein glycosylation, which is solely based on its 20% se-

quence similarity with the yeast Ost3 gene.8 Indeed, the

normal glycosylation patterns seen in serum of TUSC3-de-

ficient patients may argue against a central role of this pro-

tein in the glycosylation process. Similarly, the fact that

none of these patients has a history of cancer casts doubt

on the original assumption that TUSC3 acts as tumor sup-

pressor.8,24 As to the role of this gene in the brain, it is note-

worthy that TUSC3 interacts with the alpha isoform of the

catalytic subunit of protein phosphatase 1 (PPPC1A; MIM

176875).25 Protein phosphatase 1 has been implicated in

the modulation of synaptic and structural plasticity (for re-

view see Munton et al. 200426) and was shown to have an

impact on learning and memory in mice.27 It is therefore

conceivable that MR in TUSC3-deficient patients is caused

by an impairment of PPPC1A function. This opens up in-

teresting perspectives for future studies into the function

of TUSC3.

In summary, our study, as well as the report by Moli-

nari et al.,23 indicate that mutations leading to loss of

function of TUSC3 give rise to NS-MR. Thus, TUSC3 is

the first gene for NS-ARMR for which mutations have

been observed in more than a single family. Moreover,

it is only the fifth gene that has been implicated in

NS-ARMR so far. It remains to be seen whether TUSC3

has a direct role in glycosylation and why in patients

with TUSC3 deficiency clinical signs are confined to

the brain.
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Figure 3. Copy-Number Analysis and Haplotyping of MR Patients
(A) Results of nonpaired DNA copy-number analysis (CNAG2 tool for copy-number variations): Copy-number state (upper) and log2 ratios
(lower) for Nsp-array SNP markers located inside the first ~30 Mb of chromosome 8 are displayed for one individual per branch, showing
a 120 Kbp homozygous deletion of 8p22 comprising the first exon of TUSC3.
(B) The markers bordering the deletion as well as the first and last two deleted markers are shown, revealing that all the affected members
are homozygous for the same haplotype, whereas parents and healthy sibs are heterozygous carriers.
The American Journal of Human Genetics 82, 1158–1164, May 2008 1161



Figure 4. Deletion Encompassing the First Exon of TUSC3 in MR Patients
(A) Schematic representation of TUSC3: Arrowheads represent exons, and gray boxes mark the positions of simple tandem repeats that
could be causatively involved in the genesis of the deletion. The positions of the borders of the 121,595 bp deletion (based on NCBI Build
36.1) are indicated. The sequence chromatogram shows part of the PCR amplicon covering the junction of the deletion borders.
(B) Cosegregation analysis by PCR: Results of a deletion-specific PCR (I) and a deletion-spanning PCR (II) are shown for all the available
family members. All homozygous carriers show only amplification of the junction fragment (II), heterozygous carriers show both ampli-
cons, and noncarriers show only amplicon I.
(C) RT-PCR results from an experiment with cDNA derived from RNA preparations of one patient (IV:5) and one control lymphoblastoid cell
line sample. With a sequence of primer pairs specific for amplicons covering two to three consecutive exons each, the complete TUSC3
transcript was detected in the control but could not be amplified from patient cDNA. The results of an agarose gel electrophoresis of
5 ml from a 25 ml RT-PCR reaction (primers and conditions are available upon request) are shown. Patient and control products for a specific
amplicon (the exons covered by each amplicon are indicated) were loaded on neighboring lanes in ascending order of the amplified exons.
As positive control, a PCR specific for the X-chromosomal HUWE1 gene (MIM 300697) was performed (lane 15 and 16). Filled squares
represent the patient and open squares the control, ‘‘B’’ marks the lane loaded with the negative control, and ‘‘M’’ indicates the marker
lane (HyperLadder IV, Bioline).
1162 The American Journal of Human Genetics 82, 1158–1164, May 2008



Figure 5. Schematic Representations of Predicted Functional Domains in the TUSC3 Gene Product
The 348 amino acid TUSC3 protein is shown as an open box. Different functional domains are indicated. Differently colored shading marks
their extent and position within the protein. The deletion encompasses the first 46 amino acids and is indicated by gray shading.
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